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Abstract—Although deep neural networks (DNNs) have been
widely used, DNN models running on ASIC- or FPGA-based
accelerators still lack effective and efficient protection. Once
DNN models are stolen by attackers, it will not only infringe the
intellectual property of model providers but also lead to security
issues. The existing parameter encryption method brings greater
power consumption, which is difficult to apply to resource-
constrained edge devices. This paper proposes an effective and
efficient framework – ChaoPIM to protect the security of DNN
models by utilizing the chaotic encryption and the Processing-
In-Memory (PIM) technology. Detailed experimental results show
that our framework can effectively prevent attackers from using
DNN models normally, as the accuracy of stolen models is quite
low. Compared with the powerful Cortex-A53, Kryo-280, Intel-i5-
8265U CPUs and TITAN V GPU, ChaoPIM achieves considerable
performance improvements on various DNN models.

Index Terms—DNN, Security, PIM, Chaotic Encryption

I. INTRODUCTION

With the widespread application of deep neural networks

(DNNs), the security protection of DNN models has become

a critical concern. After DNN models are well trained on

data cloud servers and deployed on edge DNN accelerators,

security problems come from three contexts: cloud transmis-

sion, the storage of DNNs and the prediction procedure of

DNN models. For instance, for ASIC-based accelerators, when

the weights of DNN models are being loaded from the main

memory (i.e., DRAM) to the processor, attackers can steal the

weights from the processor-memory interface via side-channel

attacks (e.g., [1]). However, well-trained DNN models require

a large amount of well-labeled private data, sufficient training

resources and rich experience of experts. Thus valuable DNN

models can be sold as intellectual property. More importantly,

once DNN models are leaked, it will incur serious security

problems. Attackers can generate adversarial examples [2],

which in turn makes DNN models output wrong prediction

results. This brings challenges to the application of DNN

models in significant fields, such as autonomous driving and

medical treatment. Therefore, it is necessary to protect the

security of DNN models.

The existing methods for protecting the security of DNN

models can be divided into two categories — physical unclon-

able function (PUF) based encryption [3], [4] and parameter

encryption [5]–[9]. PUF-based encryption usually utilizes the

responses of PUF to protect the security of the weights of

DNN models for FPGA- or ASIC-based accelerators. For

instance, Guo et al. [3] use the responses of PUF to change

the sign of weights of DNN models to protect the security of

FPGA-based DNN accelerators. P3M [4] utilizes the responses

of PUF as secret keys, and then combines the process-in-

memory (PIM) technology to implement the XOR encryption

for protection of ASIC-based DNN accelerators. However,

due to environmental variations (e.g., supply voltage), the

responses of PUF are unstable and the Error Correcting

Code is required to produce reliable responses, inevitably

producing additional power consumption [4]. Besides, PUF

brings additional latency overhead and power consumption,

which are not illustrated in detail in previous studies [3], [4].
Parameter encryption is intended to directly encrypt the

weights of DNN models by using a certain data encryption

algorithm. For instance, the Advanced Encryption Standard

(AES) is adopted to encrypt the weights of DNN models

in study [5]. However, the power consumption of the AES

module is too high (e.g., 29.8 mW per module) to be applied

to resource-constrained edge devices. To reduce encryption

overhead, study [6] utilizes the fast gradient sign method

[2] to encrypt a small proportion of the weights of DNN

models. However, the encryption effect depends on the size

of adversarial perturbations added to the weights. The greater

the values of adversarial perturbations are, the better the en-

cryption effect is. As a result, the probability distribution of the

weights is changed, which is easily detected by attackers. In

addition, some researchers [8], [9] use obfuscation encryption

methods along the rows of memristors to protect the security

of DNN models for PIM-based DNN accelerators. However,

the energy-consuming redirection modules are required to

correctly accumulate the intermediate results of DNN models

[9]. Recently, study [10] utilizes chaotic encryption method to

protect the weights of DNN models running on GPUs. How-

ever, the procedure of transferring plaintext weights decrypted

on CPUs to GPUs is not secure, and the power consumption

for decrypting one layer of DNN models is very high (e.g.,

about 14 W in our observations). As a result, there is still a

lack of efficient method to protect the security of FPGA- or

ASIC-based DNN accelerators.
For the purpose of tackling the above problems, we propose

a PIM-based chaotic encryption framework to protect the

weights of DNN models for FPGA- or ASIC-based accelera-

tors. The primary contributions of this work include:

• We introduce a novel PIM-based chaotic encryption
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framework to protect the weights of DNN models. Specif-

ically, our framework can effectively protect the weights

of various DNN models running on ASIC- or FPGA-

based accelerators, and the prediction accuracy after

encryption is close to that of random guessing.

• We point out that it is not secure to decrypt the entire

weights of DNN models at one time during the prediction

procedure, and introduce a fine-grained protection scheme

that can protect the security of weights during the whole

procedure.

• We design a pipelined and reconfigurable dataflow, which

can further reduce latency overhead and energy consump-

tion required for the decryption of the weights.

• We compare latency overhead and energy consumption of

our method with the state-of-the-art CPUs and GPU. For

example, the proposed ChaoPIM achieve 6.85× speedup

and 45.27× energy reduction than a Cortex-A53 CPU for

the decryption of VGG16.

II. PRELIMINARY AND MOTIVATION

A. Anold’s Cat Map

Arnold’s Cat Map (ACM) [11], [12] is a kind of chaotic

encryption theory, which achieves encryption or decryption by

rearranging the positions of the pixels of the image as shown

in Fig. 1. Although the pixel values of the encrypted image

have not changed, it can effectively realize the encryption. The

encrypted image has no visual information at all. Based on this

idea, we expand the weights of a certain convolution layer l
of DNN models from four dimensions C×N×K×K to two

dimensions (C × K) × (N × K). Here, C is the number of

channels, and N is the number of convolutional kernels, and

K is kernel size. When K = 1, ACM can be applied to the

fully connected layer of DNN models.

1) Encryption: The formulation of ACM’s two-dimensional

matrix encryption is[
xe

ye

]
= Aτ

[
x
y

]
(mod S), A =

[
1 p
q p · q + 1

]
, (1)

where (x, y) and (xe, ye) are the original position and en-

crypted position respectively. The p, q, and τ are integers,

and S is the encryption range (0 ≤ S ≤ min{C,N}).

Different layer l of DNN models can own different encryption

parameters. Therefore, the secret key K can be formulated as

K = [L, {(τ(l), p(l), q(l), S(l))|l ∈ L}], (2)

where L denotes the encrypted layers of DNN models and

subscript (l) is the layer index.

2) Decryption: According to the secret key K and en-

crypted position (xe, ye), the original position (x, y) can be

caculated by [
x
y

]
= A−τ

[
xe

ye

]
(mod S). (3)

In this work, to reduce the latency overhead of calculating

Aτ and A−τ in Eq. (1) and Eq. (3), we set p = 1 and q = 1.

Then Aτ and A−τ can be reformulated as

Original Weights Encrypted Weights

R
o

w
s

Columns Kernel A

ACM 

Kernel A 

Kernel

0.2

0.4 …

……

Value 

ACM 

Original Image Encrypted Image

Fig. 1. ACM encryption.

Aτ =

[
1 1
1 2

]τ
=

[
f2τ−1 f2τ
f2τ f2τ+1

]
, (4)

A−τ =

[
f2τ+1 −f2τ
−f2τ f2τ−1

]
, (5)

where fτ is a fibonacci number. As the fibonacci number has a

recursive formula (e.g., f1 = 1, f2 = 1, fτ+2 = fτ+1+fτ ), the

calculation of Aτ and A−τ has negligible latency overhead.

In addition, to reduce the cost of hardware implementation

of modulus operation for arbitrary encryption range, we set

S ∈ 2n (n = 0, 1, 2, ...) in Eq. (1) and Eq. (3). Since the

modulus of S is to take low-order n bits as output, there is

almost no hardware overhead.

Each value in convolutional or fully connected layers can

be encrypted by ACM algorithm. However, larger encryption

range will lead to greater latency overhead. To reduce this

overhead, an entire convolution kernel can be viewed as a

pixel of the image for ACM encryption or decryption. In this

work, for smaller encryption range (e.g., the first layer of

DNN models), ACM is used to encrypt all values of layers

of DNN models. For a larger encryption range, entire kernels

are encrypted. After ACM encryption, the positions of original

weights change, but values of weights don’t. For example,

the kernel A in Fig. 1 is moved from the second row of the

last column to the last row of the second column after ACM

encryption, which can be completely restored to the original

position after decryption. Therefore, encryption and decryption

of ACM are completely reversible and lossless.

B. RRAM Accelerator

Recently, resistive random access memory (RRAM) dot

product accelerators with crossbars architecture have widely

been investigated (e.g., [13], [14]). The digital input signal of

crossbars is converted into the voltage signal by a digital-to-

analog converter (DAC), and the latter is applied to each word

line (WL) of crossbars. The crossbar is composed of multiple

RRAM cells. These cells share a WL in the same row, and

share a bit line (BL) in the same column. Each RRAM cell

is used as a resistor and can be switched to two states, a

high resistance state (HRS) and a low resistance state (LRS).

Therefore, one cell can be used to represent logic “0” and

“1”, known as single-level cell (SLC). Each RRAM cell can

also represent more bits information by switching to multiple

2
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Fig. 2. Overiew of the proposed architecture.

levels of resistance [15], which is called the multi-level cell

(MLC). Based on Ohm’s Law, current generated from RRAM

cells flows every BL and is converted into a digital signal by

an analog-to-digital converter (ADC).

The RRAM-based crossbar can not only store the values

to the RRAM cells but also can accomplish a matrix-vector

multiplication (MVM) in one cycle. Due to the reduction of

data movement involved in the calculation, the energy con-

sumption is extremely low. Therefore, many researchers use

RRAM-based crossbars to accelerate prediction and training

procedure of DNN models (e.g., [13], [14]). In this work, we

utilize RRAM-based crossbars to achieve the acceleration of

ACM decryption.

III. CHAOPIM DATAFLOW

A. Overview

Fig. 2 describes the architecture of our proposed ChaoPIM

framework for ASIC-based DNN accelerators. It should be

noted that our method is a general protection framework and

can be applied to any ASIC or FPGA-based DNN accel-

erators (e.g., DaDianNao [16]). Specifically, our framework

is intended to implement a decryption accelerator for ACM

based on existing DNN accelerators. RRAM-based crossbars

natively have the characteristics of storage and calculation.

To avoid frequent transmission and reduce the possibility

of being stolen by side-channel attacks, we use the storage

property of RRAM-based crossbars to store secret keys into

RRAM cells. Because the calculation of ACM decryption can

be performed on RRAM-based crossbars, the CMOS-based

processing module is no longer needed.

During prediction procedure, the weights of DNN models

are being loaded from the DRAM to the processor through

the processor-memory interface. In this context, the weights

will be easily attacked if they are all plaintexts. Therefore, the

weights on the DRAM and the on-chip buffer (e.g., eDRAM)

are kept encrypted, which is achieved by the ACM encryption.

To obtain the correct prediction results of DNN models, firstly,

the ChaoPIM accelerator requires to be invoked by a controller

to calculate correct addresses (i.e., original positions) of the

weights. Then, neural functional units (NFUs) take the weights

from the correct addresses of the on-chip buffer to calculate

the output results of DNN models. Without ChaoPIM, NFUs

would directly use the encrypted weights and eventually output

wrong prediction results. Specifically, in the original dataflow,

the input image “7” and the encrypted weights are used to pre-

dict the output result of DNN models, and an error result “2”

DAC

DAC

-
+

-
+

P-BL1
N-BL1 N-BL2 N-BL3 N-BL4

P-WL1

P-WL2 N-WL2
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Fig. 3. The RRAM PE architecture.

is produced. As a contrast, in our proposed ChaoPIM dataflow,

the correct output “7” can be produced because ChaoPIM

decrypts the weights. The proposed ChaoPIM accelerator is

composed of multiple RRAM processing elements (RRAM-

PEs) which share the ADC, Sample and Hold (S&H), and

Shift and Add (S+A) components.

B. RRAM-PE Architecture

Fig. 3 shows the detailed architecture of a RRAM-PE. To

represent positive and negative values, an analog inverter is

used to connect two crossbars according to study [17]. One of

the crossbars is used to represent positive values, and the other

is used to represent negative values. The word line (WL) and

the bit line (BL) of the positive crossbar are P-WL and P-BL,

respectively. The WL and the BL of the negative crossbar

are N-WL and N-BL, respectively. In order to reduce the

resistance noise, SLC RRAM cells are adopted for RRAM-

PEs. The RRAM cells connected between the WL and the BL

are used to store the decryption parameters f2τ+1, f2τ−1 and

−f2τ in the A−τ matrix in Eq. (5) and Eq. (3). The width of

f2τ+1, f2τ−1 and −f2τ depend on the size of τ . For example,

if τ = 5, the fibonacci number f2τ+1 = 89, f2τ−1 = 34
and −f2τ = −55, which can be encoded with 7-bit width.

Therefore, 7 SLC RRAM cells are used to store each value in

the A−τ matrix. When the input of RRAM-PE is the encrypted

position {xe, ye}, the original position {x, y} can be calculated

by x = f2τ+1×xe+(−f2τ )×ye, y = f2τ−1×ye+(−f2τ )×xe,

which is achieved by RRAM crossbars of RRAM-PE. Because

the maximum encryption range in this work is 512, i.e., the

largest number of convolution kernels of DNN models used

in our experiment, the encryption position {xe, ye} can be

encoded with 9-bit width. Furthermore, if 1-bit DACs are used,

a decrypted position can be calculated in 9 cycles.

After the analog signal is processed by S&H, shared ADC

and S+A components, the final digital original position {x, y}
is generated after taking the correct bit (e.g., modS). Sim-

ilarly, if RRAM cells store the encryption parameters of Aτ

matrix in Eq. (4) and Eq. (1), RRAM-PEs can also be adopted

to achieve ACM encryption.

C. Fine-grained Protection Scheme

The existing encryption method usually invokes the decryp-

tion procedure at one time on the ASIC chip. However, the

weights which are decrypted at one time are plaintexts during

the prediction procedure of DNN models, and these weights

can be stolen by side-channel attacks. Therefore, one-time

decryption of weights is not secure. To protect the security of
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weights during the entire prediction procedure, we propose a

fine-grained protection scheme which can decrypt a part of the

weights of DNN models required for prediction on the NFUs.

Specifically, the weights of one layer are decrypted each time.

Even if malicious attackers steal a part of the weights of DNN

models, they cannot normally use its functions. Fig. 4 shows

the difference between our method and previous P3M method

[4]. Our method can protect the weights of DNN models

throughout the prediction procedure. However, the weights

in the P3M method are all plaintexts during the prediction

procedure, which are vulnerable to side-channel attacks.

D. Pipeline

During the prediction procedure of DNN models, the de-

cryption between different layers of DNN models are in-

dependent of each other, and the latency overhead can be

reduced by utilizing the inter-layer parallelism. Therefore,

we design an inter-layer pipeline to achieve high throughput

as shown in Fig. 5. Assuming that a DNN model con-

sists of N layers, the latency overhead to finish the de-

cryption procedure is tChaoPIM
i , and the prediction time of

one layer is tNFUs
i . Then,

∑N
i=1(t

ChaoPIM
i + tNFUs

i ) is

required to finish the entire procedure without inter-layer

pipeline. On the contrary, the latency overhead is tChaoPIM
i=1 +∑N

i=2 max{tChaoPIM
i , tNFUs

i } with the pipeline.

ChaoPIM NFUs

ChaoPIM NFUs

1

2

……

…
…

Time

L
ay

er

Fig. 5. ChaoPIM pipeline.

E. Reconfigurable RRAM-PEs

When the prediction time of the (i-1)-th layer of DNN

models on NFUs is shorter than the decryption time of

the i-th layer for ACM on a single RRAM-PE (i.e.,

tNFUs
i−1 <tChaoPIM

i ), the original throughput rate of DNN

accelerators will be reduced. Ideally, we can improve the

throughput by paralleling multiple RRAM-PEs to reduce the

latency overhead, but this inevitably brings higher power

consumption. Therefore, the decryption time tChaoPIM
i should

be shorter than tNFUs
i−1 . Moreover, since tNFUs

i−1 may be ex-

tremely small, lots of RRAM-PEs are needed to achieve a

smaller tChaoPIM
i . Hence, tChaoPIM

i can be shorter than the

decryption time tRi on a reference hardware (e.g., a powerful

CPU), which may be longer than tNFUs
i−1 . To obtain the

optimal number of RRAM-PEs, we formulate the following

optimization problem,

min
αi

αi × PowerRRAM−PE

s.t. tChaoPIM
i ≤ max{tNFUs

i−1 , tRi }
, (6)

where PowerRRAM−PE is the power consumption of a

RRAM-PE component, and αi is the number of RRAM-PEs

for the i-th layer of DNN models. For a given encryption range

S(i), the decryption latency overhead tChaoPIM
i of ChaoPIM

is formulated as,

tChaoPIM
i =

S(i) × S(i)

αi
× tRRAM−PE

i , (7)

where tRRAM−PE
i is the latency overhead required for a single

RRAM-PE to decrypt one encrypted position. The optimal

number of RRAM-PEs of the i-th layer can be calculated by,

αopt
i = � tRRAM−PE

i

max{tNFUs
i−1 , tRi }

� × (S(i) × S(i)). (8)

Eq. (8) can be used to obtain the optimal number of

RRAM-PEs (i.e., αopt
i ) needed for each layer of DNN models.

Finally, according to Eq. (8) and Eq. (6), the minimum power

consumption can be obtained.

IV. EVALUATION

A. Experimental Setup

Benchmarks and Baselines. We evaluate the proposed

ChaoPIM framework on four popular DNN models, including

AlexNet, VGG11, VGG16 and ResNet18. These DNN models

are well trained on ImageNet dataset with 16-bit fixed-point

weights by Pytorch. We use DaDianNao-like [16] NFUs with

eDRAM weights buffers to evaluate the hardware performance

of ChaoPIM. For comparison, we implement ACM encryption

on a powerful Cortex-A53 CPU (2.0 GHz), Kryo-280 CPU

(2.45 GHz) and Intel-i5-8265U CPU (1.6 GHz) using C++,

and implement it on a TITAN V GPU (1.2 GHz) using CUDA.

Configurations. The power consumption of crossbars and

the analog inverter are evaluated with HSPICE simulations in

the 45nm process node. We develop a cycle-accurate simulator

to evaluate the latency overhead of ChaoPIM. RRAM cells

have a resistance range of 5kΩ ∼ 1MΩ and the read voltage

of 0.5V. ADC used in this work is based on the successive

approximation register (SAR) design, and the power consump-

tion of SAR ADC increases linearly as the bit resolution

increases [18], i.e., PSAR ≈ βNb, where β is a constant

term and Nb is the resolution of SAR ADCs. The resolution

of ADCs and DACs in our experiment is 2-bit and 1-bit,

respectively. Parameters of ADCs, DACs, S&H, S+A and

clock (i.e., 10 MHz) are consistent with those of ISAAC [14].

The accuracy loss is set to 20% [8] to meet the encryption

requirement. The latency overhead of a powerful Intel-i5-

8265U CPU is choosed as tRi in Eq. (8). The secret keys

encoded with 7-bit width are randomly generated to encrypt

DNN models in this work.

4
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Fig. 6. Accuracy influence.

B. Accuracy Influence

To illustrate the effect of ACM encryption, Fig. 6 shows

accuracy after the single-layer ACM encryption and the layer-

by-layer ACM encryption. Two conclusions can be drawn.

First, the single-layer encryption can make DNN models

lose the recognition ability. The accuracy loss of single-layer

encryption is larger than 20% for any layers of DNN models.

For instance, the accuracy after encrypting the 8th layer of

VGG16 is 46.77%, which is 24.82% smaller than the original

accuracy – 71.59%. The accuracy after encrypting the 7th layer

is 0.108%, which is equivalent to that of random guessing in

the classification task of ImageNet. The similar conclusion also

appears in ResNet18. Second, the layer-by-layer encryption is

more secure than the single-layer encryption, and the accuracy

loss of the layer-by-layer encryption is much larger than that

of the single-layer encryption. For instance, the accuracy of

ResNet18 after the layer-by-layer encryption is only 0.076%,

which is more lower than that of the single-layer encryption.
TABLE I

THE ACCURACY INFLUENCE WITH CHAOPIM.

DNN Model
Original
ACC (16-bit)

Without
ChaoPIM

ChaoPIM

AlexNet 56.52% 0.09% 56.52%
VGG11 69.02% 0.064% 69.02%
VGG16 71.59% 0.1% 71.59%
ResNet18 69.75% 0.076% 69.75%

To achieve ideal protection effect, ACM encryption can

be performed on all layers of DNN models. Table I shows

the accuracy after the layer-by-layer encryption. Without

ChaoPIM, DNN accelerators will output completely wrong

prediction results. The accuracy of DNN models is close to

that of random guessing, achieving the purpose of protection

of weights. When ChaoPIM is adopted for decryption, the

accuracy can be completely restored.

C. Hardware Performance

Latency overhead. To illustrate the efficiency of our

method, we compare the latency overhead of ChaoPIM with

that of three kinds of CPUs and a GPU for ACM decryption.

As shown in Fig. 7, ChaoPIM can achieve faster decryption

speed. For instance, when decrypting the 6th layer of VGG16,

our method outperforms the Cortex-A53, Kryo-280, Intel-i5-

8265U CPUs and TITAN V GPU by about 9.59×, 3.49×,

2.09× and 2.28×, respectively. In addition, thanks to our pro-

posed pipeline, ChaoPIM has no additional latency overhead

on some layers. For example, the latency overhead of the

3rd, 4th, 5th, 7th, and 8th layers of VGG16 is 0 us. This

is because the decryption time of these layers is shorter than
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Fig. 7. Latency comparison.

the prediction time of the previous layers of DNN models. For

decrypting the entire VGG16, our method can achieve about

6.85×, 2.38×, 1.35× and 1.22× speedup compared with the

Cortex-A53, Kryo-280, Intel-i5-8265U CPUs and TITAN V

GPU. Similar conclusions also appear in AlexNet, VGG11

and ResNet18.

Power and Energy consumption. Fig. 8 details the power

consumption of different components of ChaoPIM, and Fig. 9

illustrates the power and energy consumption on different

hardware platforms. As shown in Fig. 8, at first, as multiple

crossbars share a SAR ADC, the power consumption of

crossbars is higher than that of ADCs. The power consumption

of DACs, S&H and S+A is relatively lower. In addition,

because the latter layer of VGG16 has a larger encryption

range (i.e., 512), more RRAM-PEs are needed to achieve fast

decryption. For instance, the number of RRAM-PEs is 89

for the 9th, 10th, 11th, 12th and 13th layer, so the energy

consumption is higher than that of the previous layer. Last but

not least, the 3rd layer of VGG16 requires the least number

(i.e., 4) of RRAM-PEs. This is because the prediction time of

the second layer of VGG16 on the DaDianNao-like accelerator

is longer (i.e., about 662.97 us), and the encryption range of

the third layer is smaller (i.e., 64), so fewer RRAM-PEs are

needed to achieve the decryption procedure.
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Fig. 8. Power breakdown of RRAM-PEs.

Fig. 9 illustrates that ChaoPIM requires lower power con-

sumption to complete the decryption procedure. For instance,

when decrypting the 5th layer of VGG16, ChaoPIM is 33.3×,

92.86×, 1417.08× and 3171.46× more power-efficient than

the Cortex-A53, Kryo-280, Intel-i5-8265U CPUs and TITAN

V GPU, respectively. Besides, the number of RRAM-PEs for

decrypting the 5th layer of VGG16 is 18, and the average

power consumption of each RRAM-PE is 0.56 mW, which is

53.21× more power-efficient than that of the AES module [5].

Due to lower power consumption and faster decryption

speed, ChaoPIM consumes very little energy. For example,

when decrypting the 9th layer of VGG16, ChaoPIM is 46.32×,

45.58×, 301.48× and 520.96× more energy-efficient than

the Cortex-A53, Kryo-280, Intel-i5-8265U CPUs and TI-

TAN V GPU, respectively. For decrypting the entire VGG16,

ChaoPIM achieves 45.27×, 44.36×, 308.27× and 603.19×
energy reduction compared with the Cortex-A53, Kryo-280,
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Fig. 9. Power and Energy comparison.

and Intel-i5-8265U CPUs and TITAN V GPU, respectively.

Therefore, ChaoPIM can greatly reduce energy consumption

by utilizing the PIM technology.

D. Security Analysis

The weights of DNN models are in the chaotic state after

ACM encryption on the DRAM or the on-chip buffer. Even

if attackers obtain the weights of DNN models by side-

channel attacks, the function of DNN models cannot be used

normally. Therefore, one possible attack method is to verify

the prediction results of DNN models by using the validation

dataset. However, the attack complexity is very larger, which

approaches O
(
2|L| ·∏|L|

l=1 P(l)(τ)S(l)

)
· O(V ), where |L| is

the number of layers of DNN models, O(V ) is the complexity

of a validation procedure, and P (τ) is the period of τ for ACM

encryption (generally P (τ) ≥ 10 [19]). It takes long time to

attack one layer of VGG16 on the ImageNet validation dataset.

For example, assuming that the shape of an encryption layer

of VGG16 is 512×512×3×3, and that a validation procedure

requires 250 seconds [6] on a hardware platform, the complex-

ity of this layer approaches 10×∑9
n=1(512− 2n)2 ≈ 16M .

This attack consumes about 250 × 16M = 4000 million

seconds (i.e., 126.8 years). Considering that more layers can

be encrypted, the complexity will further increase.

TABLE II
THE RELIABILITY OF CHAOPIM.

Leakage
ACC (%)

AlexNet VGG11 VGG16 ResNet18
25% 0.1 0.094 0.112 0.086
50% 0.162 0.168 0.12 0.092
75% 23.85 0.126 0.09 0.076

According to Kerckhoff’s Principle and Shannon’s Maxim

[20], attackers can understand the encryption method except

for secret keys. To illustrate the reliability of our framework,

we assume that the secret keys of some DNN layers are leaked.

Due to extremely low accuracy, these DNN models are secure

as shown in Table II. For instance, when 75% of secret keys are

leaked, the accuracy of AlexNet is 23.85%, which is 32.67%

lower than the original accuracy. For ResNet18 with more

layers, the accuracy is only 0.076%. Therefore, our framework

is reliable. Even if most of secret keys are leaked (i.e., 75%),

DNN models cannot be used normally.

V. CONCLUSIONS

In this paper, we propose an effective and efficient PIM-

based protection framework for ASIC or FPGA-based DNN

accelerators. Even if attackers obtain the weights of DNN

models by side-channel attacks, DNN models cannot be used

normally by using ACM encryption. The accuracy after en-

cryption is close to that of random guessing. By utilizing

PIM technology, energy consumption of ACM decryption

can be greatly reduced. The extensive experiments on four

benchmarks indicate that our framework can achieve quite

high security with extremely low hardware overhead.

VI. ACKNOWLEDGMENTS

This paper is supported in part by National Natural Science

Foundation of China (NSFC) under grant No. (U20A20202,

62090024, 61876173, 61804155); in part by the National Key

Research and Development Program of China under Grant

2020YFB1600201. The corresponding authors are Xiaoming

Chen and Jing Ye.

REFERENCES

[1] W. Hua et al., “Reverse engineering convolutional neural networks
through side-channel information leaks,” in DAC, 2018, pp. 1–6.

[2] I. J. Goodfellow et al., “Explaining and harnessing adversarial exam-
ples,” arXiv preprint arXiv:1412.6572, 2014.

[3] Q. Guo et al., “Puf based pay-per-device scheme for ip protection of
cnn model,” in ATS, 2018, pp. 115–120.

[4] W. Li et al., “P3m: a pim-based neural network model protection scheme
for deep learning accelerator,” in ASPDAC, 2019, pp. 633–638.

[5] W. Shan et al., “Machine learning assisted side-channel-attack counter-
measure and its application on a 28-nm aes circuit,” IEEE JSSC, vol. 55,
no. 3, pp. 794–804, 2019.

[6] Y. Cai et al., “Enabling secure in-memory neural network computing by
sparse fast gradient encryption.” in ICCAD, 2019, pp. 1–8.

[7] S. Huang et al., “Xor-cim: compute-in-memory sram architecture with
embedded xor encryption,” in ICCAD, 2020, pp. 1–6.

[8] M. Zou et al., “Security enhancement for rram computing system
through obfuscating crossbar row connections,” in DATE, 2020, pp. 466–
471.

[9] S. Huang et al., “New security challenges on machine learning inference
engine: Chip cloning and model reverse engineering,” arXiv preprint
arXiv:2003.09739, 2020.

[10] N. Lin et al., “Chaotic weights: A novel approach to protect intellectual
property of deep neural networks,” IEEE TCAD, 2021.

[11] V. I. Arnol’d et al., Ergodic problems of classical mechanics. WA
Benjamin, 1968.

[12] G. Peterson, “Arnold’s cat map,” Math Linear Algebra, vol. 45, pp. 1–7,
1997.

[13] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ISCA,
2016, pp. 27–39.

[14] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ISCA, 2016, pp. 14–26.

[15] F. Alibart et al., “High precision tuning of state for memristive devices
by adaptable variation-tolerant algorithm,” Nanotechnology, vol. 23,
no. 7, p. 075201, jan 2012.

[16] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in
MICRO, 2014, pp. 609–622.

[17] B. Li et al., “Rram-based analog approximate computing,” IEEE TCAD,
vol. 34, no. 12, pp. 1905–1917, 2015.

[18] Q. Wang et al., “Neuromorphic processors with memristive synapses:
Synaptic interface and architectural exploration,” J. Emerg. Technol.
Comput. Syst., vol. 12, no. 4, May 2016.

[19] J. Bao et al., “Period of the discrete arnold cat map and general cat
map,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1365–1375, 2012.

[20] C. E. Shannon, “Communication theory of secrecy systems,” Bell system
technical journal, vol. 28, no. 4, pp. 656–715, 1949.

6

Authorized licensed use limited to: University of Leeds. Downloaded on January 08,2025 at 18:21:15 UTC from IEEE Xplore.  Restrictions apply. 


