
Accelerating Tensor-train Decomposition on Graph Neural Networks

Anonymous Author(s)

Abstract—Memory footprint is a major concern when training
graph neural networks (GNNs) on large graph data. Tensor-train
decomposition (TTD) offers a potential solution by representing
high-dimensional tensors with a set of smaller tensors, reducing
memory overhead. However, existing TTD-based solutions for
GNNs fail to reuse intermediate computation results and mini-
mize memory data transfers to improve GNN performance. We
introduce FALCON, a software framework to accelerate TTD-
based GNN training. FALCON leverages the observation that
a small subset of graph nodes with high edge degrees are
frequently accessed, enabling the caching of intermediate results
to reduce redundant computation and data transfers. Addition-
ally, it incorporates multi-level graph partitioning and kernel
optimization techniques to boost computational efficiency. We
evaluated FALCON using three real-world datasets on three GPU
platforms—NVIDIA 3090, 4090, and A100. Experimental results
show that FALCON outperforms previous TTD-based frame-
works, delivering a 1.3 to 8.17× improvement in throughput
while maintaining comparable or better efficiencies in memory
footprint and model accuracy.

I. INTRODUCTION

While Transformer-based deep neural networks (DNNs)
have achieved remarkable success in natural language and
image processing [1], [2], graph neural networks (GNNs)
remain a powerful tool for processing graph-structured data.
Indeed, GNNs have a wide range of applications in tasks
like drug discovery [3]–[6], physics simulations [7], fake
news detection [8], traffic prediction [9] and recommendation
systems [10], [11].

A key task of GNNs is to learn, propagate, and aggregate
the vector representation (or embeddings) of graph nodes. The
node embeddings capture the structural and relationships of
graph nodes, enabling downstream tasks such as node classifi-
cation [12]–[14], link prediction [6], and graph clustering [15].
GNNs update node embeddings based on information from
neighbouring nodes in the graph. This is typically performed
through multiple iterations of message passing, where each
node aggregates information from its neighbours and updates
its embedding accordingly. As real-life graphs often consist
of millions or billions of nodes [16]–[18] and a single
node embedding can have hundreds of elements, learning
embeddings for individual graph nodes incurs a significant
memory footprint. This is a particular problem for running
GNNs on GPUs with limited memory, restricting the scale of
data a GNN can effectively process.

Various attempts have been made to reduce the GPU
memory overhead of GNNs during training. These include
offloading some parameters and data from the GPU to CPU
memory [19], [20] and sampling a subset of nodes or
edges [21]. However, these methods have limitations. CPU-
GPU offloading introduces significant performance overhead
due to frequent data movement between host memory and

GPU’s global memory, while accuracy requirements can con-
strain the memory saving of graph sampling alone.

More recent studies show that tensor-train decomposition
(TTD) can further reduce GNN memory usage by approxi-
mating a high-dimensional tensor with low-dimensional core
tensors [22]. The core tensors, connected by TT-rank matrices,
compress the original tensor while capturing its multidimen-
sional interactions. TTD can be combined with graph sampling
to effectively reduce the memory footprint for storing node
embeddings. Our work leverages the recent development in
TTD to reduce memory footprint of GNN training.

While TTD offers the potential to reduce the memory
footprint of GNNs, applying TTD to GNN training poses two
challenges. Firstly, compressing the original large tensor into
smaller core tensors risks information loss, where even minor
inaccuracies in node embeddings can accumulate, leading
to a significant decline in model accuracy. Secondly, the
TTD computational overhead is large due to the need for
dynamic reconstruction of the original tensor from its core
tensors. This process, although manageable in systems like
recommendation engines [23] where the embedding table is
reconstructed once per batch, becomes a substantial burden
in GNN training. The frequent updates and recomputations of
the node embedding table in GNNs during iterative message-
passing cycles significantly increase computational demands,
which in turn limits the scalability of TTD.

We present FALCON, a software framework to accelerate
TTD-based GNN training. FALCON leverages TTD to reduce
the memory footprint of the graph node embedding table
while minimizing the computational overhead and accuracy
degradation introduced by TTD. FALCON finds the TTD
weights using multiple initialization methods to improve train-
ing convergence. It implemented auto-tuning to determine the
core tensor dimensions and their permutation according to
the underlying GNN architecture and the input graphs. This
preprocessing step is conducted offline and incurs only modest
overhead, taking place in the initial 3 to 4 training iterations.

To accelerate TTD computation, we exploit data reuse
and optimize TTD kernel invocations. Specifically, we cache
embeddings of the most frequently accessed graph nodes so
that access to these nodes does not require reconstructing
the original embedding from TTD core tensors to reduce
computation overhead. Kernel optimization is applied based on
the node embedding size and lookup vector size1. For smaller
lookup vectors, we buffer the tensors to avoid additional kernel
launch overhead. We also combine the matrix multiplication
(GEMM) and tensor core updates to eliminate intermediate
global memory writes, thereby minimizing the number of

1A lookup vector is a numerical vector from the node embedding table.

1

2

3

456

Target Node
GNN Layer 1

GNN Layer K

GNN Layer N

...

...

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

 Adjacency

Matrix
Output

Unsampled Node

(k-1)th hidden layer

kth hidden layerkth hidden layer

Unsampled Node

(k-1)th hidden layer

kth hidden layer

1' Aggregation

2

3

6

Linear

Layer
1

1

SUM

MEAN

...

Update

K-th Hidden Layer

Message Passing

Aggregation

Unsampled Node

(k-1)th hidden layer

kth hidden layer

1' Aggregation

2

3

6

Linear

Layer
1

1

SUM

MEAN

...

Update

K-th Hidden Layer

Message Passing

Aggregation

Fig. 1: General computation flow of GNNs.

kernel launches and enhancing overall efficiency. Our new
kernel maintains good embedded lookup performance while
leveraging TTD to reduce the memory footprint of graph
processing.

We evaluated FALCON by applying it to three node classifi-
cation tasks of Open Graph Benchmark datasets. We tested
FALCON on three GPU platforms: NVIDIA GeForce RTX
3090, RTX 4090, and A100 GPUs. We compared FALCON
against the state-of-the-art TTD GNN implementation in Nim-
ble [22], [23]. We applied FALCON to three representative
DNN models provided in the DGL [19] library: GCN [24],
GAT [25] and GraphSAGE [21]. Compared to Nimble,
FALCON achieves an average speedup of 2.3× across GNN
architectures and datasets (up to 8.17×) without compromising
the model accuracy while reducing the memory footprint of
graph processing by orders of magnitude (up to 5, 762×) over
native non-TTD GNN implementation.

This paper makes the following contributions:
• It presents new optimizations to accelerate TTD-based

GNN computation through graph partitioning (Sec.
IV-A), and forward and backward kernel optimizations
(Sec. IV-B);

• It exploits node embedding caching and TTD kernel
optimizations to reduce TTD computation overhead for
GNN processing (Sec. IV-C);

• It showcases how auto-tuning techniques can be em-
ployed to search for TTD parameters to accelerate TTD
computation in GNNs (Sec. IV-D).

II. BACKGROUND

A. Graph Neural Networks

Figure 1 depicts the standard GNN computation flow. The
connectivity of graph edges is encoded within an adjacency
matrix, where a value of 1 indicates a connection between two
graph nodes. A GNN then propagates information through the
edge connections to learn features and patterns.

When learning with GNNs, each node of the input graph
is initially assigned a fixed-length vector (embedding) as its
feature representation. These node embeddings are stored
in an embedding matrix, where each row corresponds to
the embedding of a particular node. Each node embedding
is iteratively updated by aggregating information from its
neighbouring nodes. This is done through performing message
passing through multiple GNN layers, where each node first
aggregates information from its neighbours and updates its

Row 1

Row 2

Row 3

Row 4

...
Row N

Embedding Table

1

2

3

4
56

Embedding

GNN Layer

1 Update Target Node

(a) Lookup with standard embedding tables

TT TableTT Index

(0,:)

(0,:)

(1,:)

(0,:)

(0,:)
(0,:)

Embedding

GNN Layer

1 Update Target Node

1

2

3

4
56

Lookup

(b) Lookup with TTD-based embedding tables

Fig. 2: The GNN node lookup operation with (a) standard and
(b) TTD-based embedding tables.

embedding accordingly based on the current features of neigh-
bouring nodes. Upon completion of this iterative process, the
updated node embedding can be pooled or aggregated across
the graph to obtain a global representation. Alternatively,
they can be utilized directly for graph classification or link
prediction tasks. When processing large-scale graphs, the node
embedding matrix can incur significant memory overhead,
limiting the scale of data a GNN can effectively operate on.
As we will show later in the paper, even with state-of-the-
art graph sampling methods, processing a graph with over 1
billion nodes would require over 20GB of GPU memory.

B. Tensor-train Decomposition

TTD offers a solution to reduce the memory footprint of
node embedding matrices [22], [26]. TTD represents a high-
dimensional tensor (e.g., a node embedding) as a series of 3-
dimensional core tensors linked in a chain-like structure [27],
akin to the train carriages (hence the term “tensor-train”).

Core tensors and TT ranks. Given a d-dimensional tensor
A with dimensions I1 × I2 × . . . × Id, the goal of TTD
is to express A as a sequence of 3-dimensional tensor core
{G1,G2, . . . ,Gd}2, where each tensor core Gk is of size
Rk−1×Ik×Rk. Here, R0 and Rd are usually set to 1, and the
dimensionsRk for k = 1, . . . , d−1 are known as the TT ranks.
Each tensor core Gk captures the interactions along a particular
mode (dimension) of the original tensor, with the TT ranks Rk

controlling the level of detail retained from the original tensor.
Because the aggregated size of the core tensors is smaller
than the original tensor, TTD can reduce the memory footprint
of the original tensors through approximation. Essentially, the
TT ranks balance decomposition accuracy with storage space
savings. Choosing a high TT rank enhances the precision
of TTD approximation but decreases storage efficiency and

2In general, Gd is a 4-dimensional tensor as Id should satisfy Id ∈
Rpi×qi , such that pi and qi are two factorizations of the TT embedding
dimensions. In practice, we often combine the third and fourth dimension of
G and reduce G into a three dimensional matrix for simplicity.

Algorithm 1: TTD in GNN node embeddings
Input: Embedding Tensor W ∈ RM×N

Output: Tensor train cores G1,G2, . . .Gd described in Eq.II-B
// Initialization

1 W = reshape([p1, p2, . . . , pd, q1, q2, . . . , qk , qd])
2 temp = transpose(W , [p1, q1, p2, q2, . . . , pd, qd])
3 for (i=0; i¡d; i++) do
4 temp = reshape([ri ∗ pi ∗ qi,:])

// A TT SVD follows: temp = UΣV T + E
5 temp = TT SVD()
6 Gd = reshape(U, [ri, pi, qi, pi+1])
7 end
8 Gd = reshape(temp, [1, pd,

∏i=1
d (rd) ∗ qd])

9 return (G1,G2, . . .Gd)

also slows down the model runtime (evaluations are given in
Section V-A).

Tensor reconstruction. With TTD, the original tensor A
needs to be reconstructed, during DNN training and inference,
as a product of matrices from the core tensors:

xi1,i2,...,id = G1[:, i1, :] · G2[:, i2, :] · . . . · Gd[:, id, :] (1)

where xi1,i2,...,id is an element of the targeted tensor A and
G1[:, ik, :] denotes the matrix obtained by fixing the second
index of the k-th core tensor to ik.

C. Node Embedding Table Lookup

Recall that training a GNN involves updating each node’s
embedding based on the embeddings of its neighbors
(Sec. II-A). This process includes retrieving the embeddings
of neighboring nodes from the embedding table and applying
an aggregation function (e.g., summation or mean) to compute
a new representation for the target node.

Figure 2 compares node lookup for updating node 1’s
embedding with embeddings of nodes 2 and 3, using standard
Non-TTD and TTD-based embedding tables. In the Non-
TTD (Figure 2a), the node index is used to retrieve the
corresponding embeddings (rows 2 and 3), which are then
aggregated with the target node’s embedding (node 1).

For a TTD-based embedding table (Figure 2b), the node
index is converted into TT indices to retrieve the core tensors
Gk, which are used to reconstruct the node embedding vector.
Algorithm 1 details this process, starting with an embedding
table of size M×N . Each TT core is derived from the tensor’s
singular value decomposition (SVD) [27], then reshaped into
a 4-dimensional format (lines 4-6), with customizable dimen-
sions (line 1). Finally, Gd is reshaped into a 3-dimensional
tensor (line 8) to form the GNN embedding layer.

D. Graph Sampling

A common practice to reduce the memory footprint of
GNNs is to sample only a subset of edges and nodes of
the input graph [1], [21], [28]–[32]. TTD is orthogonal to
these sampling techniques. In this work, we demonstrate that
our approach can be integrated with sampling-based GNNs,
using GraphSAGE as a case study. Specifically, GraphSAGE
implements a neighbourhood sampling method to use a subset

6 9 3 1 2 8 6 1 3 7 3 4 1 4 2 0 0 3 1 3 9 8 9 1 1
2 0 %4 0 %6 0 %8 0 %1 0 0 %

Ra
tio

 (%
) T T D C o n v

N o d e s
Fig. 3: TTD kernel computation w.r.t. the end-to-end GNN
computation time as the number of graph nodes increases.

0 25 50 75 100 125 150 175 200
Node Degree

0

2500

5000

7500

10000

12500

15000

17500

20000

Ed
ge

 C
ou

nt

(a) Node degree distribution

0 25000 50000 75000 100000 125000 150000 175000
#Embeddings

0

20

40

60

80

100

Ac
ce

ss
 P

er
ce

nt
ag

e
(%

)

(b) Embedding lookup ratio

Fig. 4: ogbn-arxiv dataset (a) node degree distribution and (b)
cumulative row accessing percentage while embedding lookup.

of neighbouring nodes to update the target node’s embedding.
During backward propagation, GraphSAGE groups the sam-
pled graph nodes into multiple minibatches before computing
each minibatch’s gradients, where each minibatch contains a
set of nodes to update the node feature. This strategy reduces
computational overhead while maintaining the local neigh-
bourhood structure essential for learning node representations.

III. MOTIVATION

TTD trades computation overhead for memory saving be-
cause the original tensor needs to be dynamically recon-
structed. It can introduce considerable computation overhead
during graph embedding lookup.

TTD computation overhead. Figure 3 shows the time spent
by the TTD kernel to reconstruct the node embedding tensor
during the forward and backward process of GNN train-
ing, compared to a typical graph convolution layer. In this
example, we consider a one-layer GraphSAGE, where the
main GNN kernel is shown as Conv, and the TTD kernels
are represented as TTD. We consider a fixed-sized graph
embedding table (32GB) by varying the number of input graph
nodes to simulate the embedding table lookup process. The
experiment was performed on an NVIDIA 3090 GPU using
a highly optimized, standard TTD implementation from the
Meta FBTT library [23]. In this experiment, we represent a
node embedding using two core tensors with r1 and r2 set
to 16. As can be seen from the diagram, the TTD kernel can
account for 25% to 93% of the end-to-end GNN training time,
which grows as the input graph becomes larger, highlighting
the need to accelerate TTD to process large graphs.

Graph edge distribution. FALCON leverages the observation
that in real-world graphs, a small proportion of nodes exhibit
high connectivity and are frequently accessed during node
embedding lookups. As a concrete example, Figures 4 reports

Index Bijection

Multi-Level Graph

Partitioning

Graph Preprocessing

Graph TT Table

Caching Nodes

Weights

Initialization

1

2

3

45
6

Input Graph
Reorder

Indices

One-off

Construct

 Embedding

Layer

Block

Kernel

Optimization

Block
...

Sampling

Training Pipeline

GNN Layer
TT-Embedding

Table

Preprocessing LossTT Decomposition

Gradients Update

Rank

Reordering

Fig. 5: FALCON overview and training workflow.

1 import torch.nn as nn
2 import dgl.nn.pytorch as dglnn
3 +import falcon
4

5 class GNNModel(nn.Module):
6 def __init__(self, *(parameters)):
7 super().__init__()
8 # GNN model layer, GraphSAGE as an example
9 self.layer = dglnn.SAGEConv(in_feat, n_hidden

)
10 ...
11 + self.emb_layer = falcon.EmbeddingBag(
12 + num_embeddings = num_nodes,
13 + embedding_dim = in_feat,
14 + num_rank = 2, # Num. tt_cores
15 + cached = True, # caching the nodes
16 + fusion = True, # kernel fusion
17 + ...
18 +)

Listing 1: GNN model definition with FALCON.

the node degree distribution and the cumulative row access
percentage during the embedding lookup of GNN training,
respectively, for the ogbn-arxiv dataset [18]. This dataset
collects the citation network among Computer Science (CS)
arXiv papers. From Figure 4a, we observe a skewed node edge
connectivity distribution, where less than 1.2% of nodes have
a node degree greater than 100. Consequently, as shown in
Figure 4b, 40% of the nodes account for 90% of the accesses
to the embedding table during GNN training. By caching
the embeddings of these frequently accessed nodes, we can
reduce the TTD overhead for reconstructing node embeddings,
lowering the overall TTD computation overhead.

Excessive TTD kernel invocations. In previous TTD imple-
mentations [22], [23], [26], [33], each TTD kernel handles a
fixed number of graph nodes. This fix-sized computation ker-
nel strategy leads to low GPU utilization and poor scalability.
Our profiling results show that this strategy is ill-suited for
GNN training, where the number of neighbour nodes sampled
at each layer can vary. As a result, this approach requires mul-
tiple kernel invocations for different sizes of sampled nodes,
increasing overhead and reducing computational efficiency.
FALCON addresses this issue by implementing TTD kernels
that can process a dynamic number of embedding queries and
kernels fusion for better TTD computation.

IV. OUR APPROACH
Figure 5 shows how FALCON integrates with the GNN train-

ing pipeline during offline preprocessing and online training.
In the one-off preprocessing step, FALCON partitions the input
graph to enhance data locality using index mapping and multi-
level graph partitioning (Sec. IV-A). The node embeddings are
sorted into an ordered table and then mapped to the TTD table.

FALCON integrates a range of optimizations to accelerate
TTD computation for GNN training. In the forward phase, we
buffer and batch kernel inputs to reduce kernel launching over-
head (Sec. IV-B) and cache embedding tensors of frequently
accessed nodes (Sec. IV-C) to accelerate TTD computation.
In the backward phase, we develop an optimized TTD Up-
dates Kernel (Sec. IV-B) for more efficient use of memory
bandwidth. Finally, we employ auto-tuning to choose the TT
rank order and the optimal tensor core weight initialization
(Sec. IV-D).

Implementation. We have packaged all our optimizations
into Python packages and provide APIs similar to the
PyTorch torch.nn.EmbeddingBag() interface. List-
ings 1 depicts how FALCON methods can be utilized
in the GNN model definition. For general GNN train-
ing, the user needs to invoke FALCON in the model set-
tings (lines 14 in Listing 1) before model training. The
self.emb_layer()(Line 11) is just the same as what the
user creates with torch.nn.EmbeddingBag() and can be
further called before passing to GNN layers. FALCON will then
automatically manage the rest of the GNN training pipeline.

A. Offline Graph Partitioning

For an input graph, FALCON provides an API to partition
the graph, improving data locality and aligning graph topol-
ogy with TTD. The aim is to create disjoint subgraphs that
maximize internal connections and minimize external ones.
During the GNN’s Aggregation process, node states within
a graph tend to show similarity, especially with high-degree
nodes requiring frequent access. Proper graph partitioning
enhances data locality and improves the embedding table
lookup performance during GNN training.

We implement an edge-cut3 strategy, which assigns nodes
to specific partitions and stores the result in a JSON file with a
small overhead4. GNNs update node embeddings by traversing
edges to aggregate neighboring embeddings. To improve GPU
memory locality, nodes and their neighbors are placed in
consecutive locations in the embedding table after partitioning
the graph. A bijective mapping array is used to link node
indices to embedding table indices. Although this introduces
an indirect memory reference, subsequent accesses to larger
tensor cores improve consecutive memory access and cache
locality, enhancing performance.

Figures 6 and 7 illustrate the differences between our graph
partitioning method and conventional approaches. Figure 6

3Each node is assigned to a specific partition (subgraph), which shares a
specific number of edges between them.

4The overhead depends on the size of the dataset. For the largest dataset
used in this paper (ogbn-paper100M), it can take around 10 training epochs.

(a) Original Graph (b) One Level Partitioning (c) Three Level Partitioning

5

3
0

1

2 6

4

3
0

1

2 6

4

5

6

3

3

0

1

2 6

4

5

6

3

1
3

1st GNN Layer Sampling 2nd GNN Layer Sampling 3rd GNN Layer Sampling1st GNN Layer Sampling 2nd GNN Layer Sampling 3rd GNN Layer Sampling

Embedding Table

Index 0

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Row 1 Row 1 Row 1
Row 0 Row 0 Row 0

Row 2 Row 2 Row 2

Row 3 Row 3 Row 3

Row 4 Row 4 Row 4

Row 5 Row 5 Row 5

Row 6 Row 6 Row 6

Embedding Table

Index 0

Index 1

Index 2

Index 3

Index 6

Index 5

Index 4

Row 1 Row 1 Row 1
Row 0 Row 0 Row 0

Row 2 Row 2 Row 2

Row 3 Row 3 Row 3

Row 6 Row 6 Row 6

Row 5 Row 5 Row 5

Row 4 Row 4 Row 4

Embedding Table

Index 4

Index 0

Index 1

Index 3

Index 6

Index 5

Index 2

Row 0 Row 0 Row 0
Row 4 Row 4 Row 4

Row 1 Row 1 Row 1

Row 3 Row 3 Row 3

Row 6 Row 6 Row 6

Row 5 Row 5 Row 5

Row 2 Row 2 Row 2

Fig. 6: An input graph partitioning example with graph sampling method. (a) is the original input graph, (b) shows the one-level
METIS partitioning method and (c) shows the three-level customized partitioning approach. The shared nodes (e.g. node 6 and
node 3) are boundary nodes and are referenced to nodes in other partitions.

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(1,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(1,:,:)

(0,:,:)

(0,:,:)

(1,:,:)

(0,:,:)

(0,:,:)

(1,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

TT Cores

Row 0 Row 1 Row 3 Row 4

One Level Partitioning Embedding Table

Three Level Partitioning Embedding Table

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(1,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(1,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(0,:,:)

(1,:,:)

(0,:,:)

(0,:,:)

(1,:,:)

(0,:,:)

TT Cores

Row 4 Row 0 Row 1 Row 3

Index 0

Index 1

Index 2

Index 3

Index 6

Index 5

Index 4

Row 1
Row 0

Row 2

Row 3

Row 6

Row 5

Row 4

Index 4

Index 0

Index 1

Index 3

Index 2

Index 5

Index 6

Row 0
Row 4

Row 1

Row 3

Row 2

Row 5

Row 6

Fig. 7: An example of updating node 0 from Figure 6. We use the [2, 2, 2] index system to store all the TT cores index. E.g.,
node 0 from Figure 6 represents Row 0 from the embedding table and will be further mapped as G1[0, :, :]×G2[0, :, :]×G3[0, :, :].

B a s e l i n e r c m k M E T I S M - l e v e l p a r t i t i o n0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

Th
rou

gh
pu

t S
pe

ed
up

(a) End2End Performance

B a s e l i n e r c m k M E T I S M - l e v e l p a r t i t i o n0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

Te
st

Ac
c.

(b) Test Accuracy

Fig. 8: GraphSAGE performance on the ogbn-products dataset
with different partitioning methods. The baseline is Graph-
SAGE with no graph partitioning.

shows a three-layer graph sampling method and the resulting
node embedding structure, where four nodes are sampled in
the first layer, three in the second, and two in the final layer.
To update node 0 according to the sampling rules, the graph
Aggregations would proceed as follows:

N0 ← Aggregate([N0, N1, N3, N4]) (2)
N1 ← Aggregate([N1, N3, N6]) (3)
N3 ← Aggregate([N3, N5]) (4)
N6 ← Aggregate([N6, N2]) (5)

In this setup, using a standard graph partitioning algorithm like
METIS (Figure 6b) improves data locality for the third layer,
where embedding vectors of sampled nodes at the 3rd layer are
stored in consecutive order in the embedding table. However,

the embedding tables for the first and second layers are not
optimized for memory access. Standard graph partitioning
algorithms are designed to minimize edge cuts and balance
partitions but do not optimize memory access patterns across
multiple GNN layers with different sampling patterns. FAL-
CON performs multi-level partitioning (Figure 6c), aligning
embedding vector memory layouts across all layers, improving
the data locality across GNN layers for full-graph processing.

Figure 7 illustrates the process of mapping the embedding
table to the TT core index system. Using a [2, 2, 2] indexing
scheme for all nodes, this structure aligns with three tensor
cores that update node embeddings. The mapping is repre-
sented as:

Ni = G1[:, i1, :]× G2[:, i2, :]× G3[:, i3, :] (6)

where ith is a node’s index decomposed as [i1, i2, i3], corre-
sponding to indices in the tensor cores. Figure 7 highlights
how the first layer of the embedding vector is organized into
TT cores. If the TT cores are optimally structured, shared
TT indices (e.g., G1[0, :, :]) can be effectively cached across
embedding vectors.

Figure 8 presents an end-to-end GNN performance on
the ogbn-products dataset using different graph partitioning
methods. In Figure 8a, we compare the TTD training times for
two representative one-level partitioning methods: METIS and
Recursive Coordinate Metis-Kway (rcmk) [34]. We observe
that effective graph partitioning should 1) follow multi-level

0 . 3 0 . 6 0 . 9 1 . 3 1 . 5 1 . 8 2 . 2 2 . 5 2 . 8 3 . 1 3 . 4 3 . 7 4 . 1 4 . 402 0 04 0 06 0 08 0 01 0 0 0
Tim

es
 Pe

r S
tep

 (u
s)

B u f f e r S i z e (G B)

 r e d u c t i o n S G E M M G E M M I n i t i a l i z a t i o n

Fig. 9: TTD breakdowns with forward optimization.

Kernel init

GEMM

SGEMM

TT index

Performance

Improvements
......

Tensor Buffer

GEMM

Performance

Improvements

Vanilla

TTD

Kernel

FALCON

Kernel

Times

GEMM

TT Cores

Update

(a) Forward phase (b) Backward phase

Cores Update

GEMM
Cores Update

GEMM
Cores Update

Fig. 10: Overview of our kernel optimization. The (a) forward
and (b) backward phases show one step walk of a GNN+TTD
training iteration.

partitioning based on GNN layers and 2) align with the
TTD factorization pi (see Figures 6c and 7). The multi-
level partitioning strategy employed by FALCON, shown in
Figure 8, is tailored to the graph’s factorization, yielding an
average 1.15× speedup and improved test accuracy due to
better convergence. We note that while Figure 8 shows how
our approach can be applied to a 3-layer GNN using a 3-level
partitioning, our optimization can be a GNN with an arbitrary
number of layers and support multi-level partitioning.

We stress that graph partitioning takes place offline during
the preprocessing stage before training. Its overhead is compa-
rable to 1 to 2 GNN training epochs and hence is negligible in
typical GNN training that requires hundreds or thousands of
training epochs. Given the structure of a GNN, Sampling and
Aggregation occur at each layer, so an effective partitioning
method should follow the principle P = L, where P represents
the partitioning levels and L corresponds to the number of
GNN layer.

B. TTD Kernel Optimization
As discussed in Sec. III, the current TTD kernel imple-

mentation assumes a fixed input size, leading to poor GPU
utilization during GNN embedding table lookups. FALCON
addresses this by batching input processing in the TTD for-
ward phase and introducing kernel fusion in the backward
phase. As shown in Figure 9, a TTD kernel has a four-stage
pipeline: initialization, general matrix multiplication (GEMM),
sparse GEMM (SGEMM), and reduction. Each GNN layer
updates node embeddings using neighbor sampling from the
previous layer, forming a chain of TTD kernel calls. How-
ever, standard TTD implementations like the Nimble TTD
kernels are not dynamically resized for GEMM and SGEMM,
resulting in redundant kernel calls. With graph sampling, each

0 1 2 3 4 5 1 10 . 0
4 0 . 0
8 0 . 0

1 2 0 . 0
1 6 0 . 0
2 0 0 . 0

Tim
es

 (u
s)

G E M M L a u n c h C o u n t s

1 . 6 3 X

Fig. 11: GEMM kernel breakdowns in a single TTD forward
step, where the x-axis represents the total number of kernel
invocations.

layer processes a subgraph by retrieving varying numbers of
embedding vectors. Using a fixed kernel size is inefficient for
this computing pattern, resulting in computational redundancy
and synchronization delays.

Forward optimization. FALCON reduces GEMM and
SGEMM kernel invocations by first buffering the tensor data
and then launching the kernels to process the buffered data.
Figure 10a outlines our forward optimization. We create a
buffer in the GPU memory to adapt to various input node
sizes. Figure 10 depicts how this improves performance, with
GEMM and SGEMM only triggered when the tensor size
reaches the buffer threshold. We record the first few steps of
the forward running (similar to a warmup stage) and choose
the optimal buffer threshold. This happens for each GNN
layer forward pass. Figure 9 provides a profiling example
of forward kernel optimization. In a typical GNN, most of
the computational cost during the forward phase comes from
GEMM and SGEMM, depending on the number of nodes
accessed. For instance, profiling with a 32GB embedding table
and 10,000 node accesses per step results in 11 GEMM and
SGEMM computations. Our method uses a temporary buffer
to store TTD core tensors, launching the kernel only when
the buffer is full. While this increases the time per kernel, it
reduces the overhead of kernel initialization and reduction and
lowers the total number of kernel invocations. Figure 9 also
suggests that larger buffers are not always beneficial; there
is a tradeoff between average kernel cost and overall kernel
efficiency (Figure 11), depending on the input node size.

TT backward optimization. Using TTD for node embed-
dings, the backward pass of GNN training consists of multiple
stages of GEMM and TT core updates. This process is shown
in Figure 10b. In Figure 10b, the unoptimized approach
(Nimble and others) handles the backward pass separately:
first, GEMM operations compute the gradient-related values,
followed by a subsequent kernel that updates the tensor cores
(TT cores). To address this, we propose a new TTD update
kernel, where the GEMM and TT core update kernels are fused
within the backward propagation loop. In the previous Nimble
approach, the intermediate results from GEMM were often
written to global memory and then read again for the TT core
updates. By fusing the GEMM and TT core update operations
into a single CUDA kernel, we eliminate intermediate memory

B a s e
l i n e

1 %
- E m b

2 %
- E m b

3 %
- E m b

4 %
- E m b

5 %
- E m b

6 %
- E m b

7 %
- E m b

8 %
- E m b

9 %
- E m b

1 0 %
- E m b

0 . 0
0 . 51 . 0
1 . 5
2 . 02 . 5
3 . 0

Sp
ee

du
p

Fig. 12: GraphSAGE performance on the ogbn-products
dataset with different caching size. The x-axis shows the cache
size (with up to 10% of the embedding table)

writes and redundant kernel launches, improving efficiency.

C. Caching Graph Nodes

TTD introduces computational overhead by recomputing
intermediate results during both forward and backpropagation.
To reduce recomputations, FALCON stores forward pass in-
termediates of frequently accessed, high-degree nodes. Based
on insights from Figures 4a and 4b, which show unbalanced
graph degree distributions and sparse embeddings, we cache
embeddings for high-degree nodes as non-TTD tensors in
GPU memory. The cache is a dedicated, dynamically adjusted
GPU buffer, fine-tuned throughout training to balance memory
usage and computation cost to maximize memory efficiency.

To initialize our software cache, we traverse the graph (or
a sampled subgraph) during the first two training epochs to
cache the top 10% of nodes by degree. To handle changing
access patterns, especially in deeper sampling-based GNN
layers, we use a hash table with a Least Frequently Used
(LFU) algorithm to track access frequencies. This hash table
stores the original embedding rows, access frequencies, and
GPU caching states. During forward passes, the cache is
dynamically updated, with cache hits retrieving embeddings
directly and misses triggering TTD computation. Since embed-
ding lookups are faster than TTD, the reduction in computation
generally outweighs the cache management overhead. We note
that this software cache is automatically managed by the
FALCON runtime and is transparent to the user code.

Caching frequently accessed nodes improves node embed-
ding lookups, but the performance gains plateau as cache
size increases since not all nodes are frequently accessed. To
handle diverse graph structures and usage patterns, FALCON
provides a customizable user interface to specify the cache
size, optimizing GPU memory usage. Figure 12 shows that
speedup scales linearly with cache sizes up to 8% of the
embedding table, achieving a 2.65× speedup, after which it
stabilizes. The optimal cache size varies with batch size and
graph datasets, depending on the highest degree distribution
in each batch. Our analytic model suggests that caching the
top 10% of nodes yields the best performance.

D. TTD Parameter Tuning

FALCON searches for the optimal parameters using the
nevergrad library [35]. Specifically, it explores combinations

RandomSearch

(Baseline)

CMA

PSO

TwoPointsDE

Weights Initialization Configuration

Fatorization vectors

p_i and q_i

Rank value

Fig. 13: Search algorithms and parameters used by FALCON.

TABLE I: Tunable parameters considered by FALCON

Tuning Parameters Range Total Num.

Rank [1, 1] - [256, 256] 65,536
Factorization p [1,1,1] - [256, 256,

256]
16,777,216

Factorization q [1,1,1] - [256, 256,
256]

16,777,216

Weights [’Gaussian’, ’Eigen
Decomposition’,
’Orthogonal
Decomposition’]

3

of the tensor-train weight initialization method, rank, and
factorization values pi and qi to enhance performance. As
shown in Figure 13, FALCON leverages multiple algorithms
like CMA and PSO to find the best configurations for TTD,
aiming to reduce running times without sacrificing accuracy.
Our objective function is defined as:

Obj = min

(
(1− λ)

Loss

Lossmax
+ λ

T

Tmax

)
(7)

where λ controls the trade-off between accuracy and runtime.
Increasing λ shifts the focus towards minimizing runtime
while still aiming to achieve high accuracy. We empirically
set λ to 0.2 in this work.

Table I summarizes the tunable parameters. Our search
strategy considers four default optimization algorithms: Ran-
domSearch, Covariance Matrix Adaptation (CMA) [36], Par-
ticle Swarm Optimization (PSO) [37], and the Differential
Evolution algorithm (TwoPointsDE) [38], which are shown
to be useful in prior performance tuning works. Additional
customized algorithms can be incorporated based on specific
needs. These algorithms are combined in a hybrid manner,
with strategies switching during the optimization process.
Nevergrad allocates the computational budget (in terms of
the number of configurations to be evaluated) across differ-
ent algorithms, balancing exploration and exploitation, and
dynamically adjusts which algorithm to prioritize based on
intermediate results throughout the optimization.

TTD weights initialization. Previous research shows that
initializing TTD weights using orthogonal initialization (i.e.,
ensuring the shaped matrices of TTD core tensors have orthog-
onal columns or rows) instead of the more commonly used
Gaussian initialization can speed up convergence and reduce
the reliance on network width for effective training [39].
This is because orthogonal initialization helps preserve the
magnitude of gradients, avoiding issues like vanishing or

1 2 , 2 8 , 8 1 4 , 4 2 , 4 1 0 , 4 4 , 2 2 4 , 2 1 6 , 8 1 0 , 8 1 4 , 201 02 03 04 05 06 07 0
Ru

nti
me

(s)

& A
ccu

rac
y(%

) T i m e _ 1 T i m e _ 2 A c c _ 1 A c c _ 2

Fig. 14: Top 10 performance with different reordering and
rank numbers by applying GraphSAGE to the ogbn-products
dataset. Time 1 and Time 2 indicate the time per epoch for
rank reordering methods 1 and 2, respectively, while Acc 1
and Acc 2 are the test accuracy for the respective methods.

TABLE II: Hardware platforms used in evaluation

GPU CUDA ver. GPU mem.
(GB)

Mem.
bandwidth
(GB/s)

NVIDIA 3090 V12 24 935.8
NVIDIA 4090 V12 24 1008
NVIDIA A100 V12 80 2039

exploding gradients during training. To ensure these bene-
fits, we initialize the core tensors (TT-cores) in a way that
guarantees the orthogonality of the product embedding matrix
W . Our system also offers tunable initialization methods:
(1) Gaussian distribution, (2) eigen decomposition, and (3)
orthogonal decomposition, providing flexibility to choose the
best method for each GNN task.

TTD rank reordering. Due to the characteristics of the
input graph, the rank order of the tensors will also affect
the final performance after the small tensors are divided by
TTD. As shown in Figure 14, a reordered TTD rank will
affect both the running time and model performance. The data
was collected by applying GraphSAGE to the ogbn-product
dataset. For example, choosing [12, 2] and [2, 12] may affect
the computation complexity and lead to up to 20% drop in
performance and test accuracy.

V. EXPERIMENTAL SETUP

Evaluation platforms.
As listed in Table II, we evaluate FALCON on three NVIDIA

GPU platforms. We use Nvidia CUDA Toolkit version 12.0
with driver version 525.60.13. All platforms have 2x 20-core
Intel Xeon Gold 5218R CPUs @ 2.10GHz and 128 GB of
CPU RAM.

GNN models. We consider three representative GNN archi-
tectures: the graph convolution network (GCN), the graph
attention network (GAT) and GraphSAGE which implements
a sampling method. We followed the implementation and
configuration of each baseline model from the OGB leader-
board [40]. Specifically, each model has a typical 3 GNN
layers with a hidden dimension of 256. For GraphSAGE,
we use the default sampling rate by sampling 3, 5, and
15 neighbors at the first, second, and third hidden layers,

TABLE III: Graph datasets used in the evaluation.

Dataset #Node #Edge

ogbn-arxiv 169,343 1,166,243
ogbn-products 2,449,029 61,859,140
ogbn-papers100m 111M 1,615M

TABLE IV: Overall GNN model performance.

Approach Acc. (%) Compress. Ratio

Non-TTD 66.2 1
Nimble GNN 64.8 22.9xGCN on

ogbn-arxiv FALCON 65.7 23x
Non-TTD 74.5 1
Nimble GNN 69.3 5, 762×

GraphSAGE
on ogbn-
products FALCON 75.2 5, 763×

Non-TTD N/A 1
Nimble GNN 59.5 424×

GraphSage
on ogbn-
papers100m FALCON 63.2 424×

respectively, during the aggregation process. We use the open-
source implementations of these models from the Deep Graph
Library (DGL) [19].

Datasets. We use three graph datasets from the OGB suite [18]
to train and test GNN models for node classification, with
dataset statistics shown in Table III. GCN and GAT are
applied to the ogbn-arxiv dataset using full-batch training,
while GraphSAGE is used with sampling techniques for the
larger ogbn-products and ogbn-papers100M datasets.

Evaluation baselines and metrics. We compare FALCON
against the closely related work, Nimble GNN [22], which
employs the standard TTD implementation or GNN. Since our
work aims to accelerate TTD-based GNNs, we evaluate FAL-
CON and the baseline on model accuracy, training throughput
(measured as the number of graph nodes processed per second)
and running time under a similar embedding table compression
rate. For the ogbn-arxiv dataset, we can use the full-batch
training (without TTD) as the up-bound accuracy.

A. Overall Results

Table IV compares the performance of FALCON with the
standard node embedding method without TTD (Non-TTD)
and Nimble GNN (that uses a standard TTD for node embed-
ding table) across various graph datasets. All GNN models are
trained with the same number of iterations. For the smallest
dataset (ogbn-arxiv), we apply GCN for full graph training,
while GraphSAGE is used for the other two larger datasets.
Later, we extend our evaluation to GAT. We measure the
memory footprint reduction over the Non-TTD version, which
we refer to as the compression ratio. FALCON delivers better
test accuracy than Nimble due to improved convergence, with
accuracy comparable to or sometimes better than the Non-TTD
version. For ogbn-products, FALCON reduces the memory
footprint of graph processing by 5, 763× while achieving the
highest accuracy, outperforming Nimble’s TTD implementa-
tion for both memory saving and accuracy.

r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0
5 0 . 0 k

1 0 0 . 0 k
1 5 0 . 0 k
2 0 0 . 0 k

Th
rou

gh
pu

t N i m b l e F A L C O N
o g b n - p a p e r s 1 0 0 M o g b n - p r o d u c t s o g b n - a r x i v

r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0 r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0
Fig. 15: GraphSAGE end-to-end performance on NVIDIA 3090, the higher the throughput the better.

r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0
5 0 . 0 k

1 0 0 . 0 k
1 5 0 . 0 k
2 0 0 . 0 k
2 5 0 . 0 k

Th
rou

gh
pu

t N i m b l e F A L C O N
o g b n - p a p e r s 1 0 0 M o g b n - p r o d u c t s o g b n - a r x i v

r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0 r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0
Fig. 16: GraphSAGE end-to-end performance on NVIDIA 4090, the higher the throughput the better.

r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0
2 0 . 0 k
4 0 . 0 k
6 0 . 0 k
8 0 . 0 k

1 0 0 . 0 k

Th
rou

gh
pu

t N i m b l e F A L C O N
o g b n - p a p e r s 1 0 0 M o g b n - p r o d u c t s o g b n - a r x i v

r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0 r a n k = 2 r a n k = 3 r a n k = 4 r a n k = 5 r a n k = 1 0
Fig. 17: GraphSAGE end-to-end performance on Nvidia A100, the higher the throughput the better.

5 0 1 0 0 1 5 0 2 0 0 2 5 00 . 03 0 0 . 0 k6 0 0 . 0 k9 0 0 . 0 k1 . 2 M1 . 5 M1 . 8 M

Th
rou

gh
pu

t o g b n - a r x i v G r a p h S A G E - N i m b l e G r a p h S A G E - F A L C O N G C N - N i m b l e G C N - F A L C O N G A T - N i m b l e G A T - F A L C O N

5 0 1 0 0 1 5 0 2 0 0 2 5 00 . 0 01 5 . 0 0 k3 0 . 0 0 k4 5 . 0 0 k6 0 . 0 0 k7 5 . 0 0 k o g b n - p r o d u c t s

T T - R a n k s 5 0 1 0 0 1 5 0 2 0 0 2 5 001 0 k2 0 k3 0 k4 0 k5 0 k o g b n - p a p e r s 1 0 0 M

Fig. 18: Performance of GNN models with different TT ranks on NVIDIA 3090. Note: training with a high TT rank such as
[256, 256] on a large dataset like ogbn-papers100M causes out-of-memory, so it is not included in the plot.

B. GNN Training Performance
We compare FALCON with TTD-based Nimble GNN in

Figures 15 - 17. Varying TT rank configurations (by adjust-
ing the number of TT core tensors) shows that higher TT
ranks preserve accuracy but increase computational overhead,
reducing throughput by about 7%, consistent with previous
studies [23], [26]. For a three-layer GNN with billions of nodes
and edges, a TT rank of 2 is sufficient for good accuracy.
Across all TT rank settings, FALCON achieves a 1.3 ∼ 8.17×
throughput improvement over Nimble, with smaller graphs like
ogbn-arxiv showing greater speedups, while larger graphs like
ogbn-papers100M show smaller gains. This is because our
optimized kernel is more effective when the input node size
fits within the kernel buffer. Larger GPU memory and higher
bandwidth further improve performance for larger graphs,
as seen with ogbn-products on the A100 GPU (Figure 17).
We also apply FALCON to GCN and GAT in Figure 19(a),
where GCN shows a 2.54× throughput improvement, and

GAT achieves 1.35× on the ogbn-arxiv dataset. Both GCN
and GAT, trained in full batches without sampling, benefit less
from our TTD optimizations since their hidden layers impact
TTD computation less than GraphSAGE.

The advantages of FALCON mainly come from two key
strategies: 1) caching key nodes to reduce TTD recomputation,
and 2) kernel optimization, which maximizes GPU utilization.

C. Portability and Scalability

We evaluate the impact of TT rank settings by changing
the TT ranks from [8, 8] to [256, 256] in Figure 18. This
experiment applies the GNN models to the ogbn-arxiv dataset.
FALCON outperforms Nimble in every TT rank, demonstrating
robust performance. Furthermore, the performance benefits of
FALCON become even more pronounced when testing with
larger graphs and varying TT ranks. For instance, when eval-
uating using the ogbn-products and ogbn-papers100M datasets
with GraphSAGE, the improvements are notably significant.

3 0 9 0 4 0 9 0 a 1 0 0 - a r x i v a 1 0 0 - p r o d u c t s0 . 0
4 0 0 . 0 k
8 0 0 . 0 k

1 . 2 M
1 . 6 M
2 . 0 M

Th
rou

gh
pu

t G A T - N i m b l e G A T - F A L C O N G C N - N i m b l e G C N - F A L C O N

XX
(a) GCN and GAT performance

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
1 0 k2 0 k3 0 k4 0 k5 0 k6 0 k

Th
rou

gh
pu

t

B a t c h S i z e
(b) GraphSAGE Scalability

Fig. 19: (a) GCN and GAT end2end performance with ogbn-arxiv/products dataset and (b) GraphSAGE scalability with ogbn-
products dataset. The X marks the out-of-memory due to the high memory footprint of GAT.

0 1 2 3 4 5 6S p e e d u p

Te
ch

niq
ue

s + C a c h i n g N o d e s
 + K e r n e l O p t i m i z a t i o n
 + M u l t i - l e v e l P a r t i t i o n i n g
 + R a n k R e o r d e r i n g
 + W e i g h t s I n i t i a l i z a t i o n
 B a s e l i n e

Fig. 20: Speedup breakdown for GraphSAGE in ogbn-products
with different optimizations on Nvidia 3090.

A larger TT rank typically demands more memory and incurs
higher computational overhead. FALCON maintains higher
performance, even as the complexity and size of the TT ranks
increase. We also apply FALCON in GraphSAGE with different
batch sizes in Figure 19b to evaluate the scaling of FALCON.
As shown in Figure 19b, FALCON offers linear performance
gains, demonstrating good scalability.

D. Perofmrance Breakdown
We now examine the impact of individual optimizations

in FALCON using the ogbn-products dataset to quantify their
benefits. While different graph datasets may yield varying
performance improvements, the relative contribution of each
technique remains similar. As shown in Figure 20, our ap-
proach achieves an overall speedup of 6.2×. Techniques like
rank reordering and weight initialization contribute approxi-
mately 1.1× speedup, while graph partitioning and backward
kernel fusion provide around 1.2× improvement. The most
significant gains come from caching and kernel optimization,
each delivering about 1.5× speedup.

VI. RELATED WORK

Our work builds upon the following past foundations.

TTD for GNNs. TTD was introduced in [27] and later
employed in [41] to compress and calculate the weight ten-
sors within each linear layer of a neural network. Subse-
quently, Nimble GNN Embedding [22], derived from FBTT-
Embedding, attempted to optimize GNNs using TTD. It intro-
duced two algorithms: one for TT matrix decomposition and
another for orthogonal initialization of TT cores. TT-GNN [26]
targets hardware-level optimization, using TTD to compress
the graph embedding matrix to enable model training fully
within on-chip memory. However, these methods overlook the
unique characteristics of graph data for memory efficiency

optimizations and fail to optimize the TTD kernel. Our ap-
proach aims to fill this gap by leveraging graph connectivity
to improve memory access efficiency to the node embedding
table and optimizing GNN TTD kernels for performance.

TTD optimizations. The work presented in [42] shows that
TTD-based DNN model inference has redundant computa-
tions. ETTE [33] proposes a new tensor core construction and
computation ordering mechanism to simultaneously reduce
stage-wise computation and memory overhead. TTD has also
been applied in NLP [43], [44]. Recent work [39] shows
that proper weight initialization can improve the training
convergence when using TTD with DNNs. Additionally, TTD
is used to reduce the memory footprint of recommendation
systems [23], [45]. Although FALCON is tailored for graph ap-
plications, it is theoretically orthogonal to the above methods
at the system level. Our kernel optimization approach could
be further extended to DLRM and NLP applications while
dealing with large embedding tables.

TTD parameters tuning. TT-RALS [46] demonstrates how to
choose optimal TT ranks. Some implementations by tensorly,
such as [47], focus on different compression methods (CP, TT,
Tucker, etc.) in convolutional and fully connected layers. [39]
provides TTD convergence guarantees and assists with TTD
initialization. Although TTD weights initialization is crucial
for maintaining DNN training performance, it is compatible
with our approach as discussed in Sec. IV-D. Additionally,
since our approach results in minimal accuracy degradation,
we consider the above parameter selection and weight initial-
ization to be enhancements rather than necessities.

VII. CONCLUSION

We have presented FALCON, a software framework to
accelerate TTD computation for graph node embedding lookup
and update in GNN training. FALCON enhances data reuse
by caching frequently accessed graph nodes and TTD kernel
pre-fusion. It automatically searches offline for optimal TTD
parameters to improve training convergence and implements
kernel fusion for backward propagation to enhance TTD com-
putation efficiency. We evaluated FALCON on representative
graph datasets across three NVIDIA GPU platforms and three
GNN architectures. Experimental results show that FALCON
delivers, on average, a 2.3× speedup (up to 8×) over the
standard TTD-based GNN method. It can reduce the memory

footprint of the node embedding tables by up to 5, 763×
without compromising the model accuracy.

REFERENCES

[1] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, 2019,
pp. 257–266.

[2] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision gnn: An image
is worth graph of nodes,” Advances in neural information processing
systems, vol. 35, pp. 8291–8303, 2022.

[3] D. Jiang, Z. Wu, C.-Y. Hsieh, G. Chen, B. Liao, Z. Wang, C. Shen,
D. Cao, J. Wu, and T. Hou, “Could graph neural networks learn better
molecular representation for drug discovery? a comparison study of
descriptor-based and graph-based models,” Journal of cheminformatics,
vol. 13, pp. 1–23, 2021.

[4] Z. Zhang, L. Chen, F. Zhong, D. Wang, J. Jiang, S. Zhang, H. Jiang,
M. Zheng, and X. Li, “Graph neural network approaches for drug-target
interactions,” Current Opinion in Structural Biology, vol. 73, p. 102327,
2022.

[5] K. Shao, Y. Zhang, Y. Wen, Z. Zhang, S. He, and X. Bo, “Dti-
heta: prediction of drug–target interactions based on gcn and gat on
heterogeneous graph,” Briefings in Bioinformatics, vol. 23, no. 3, p.
bbac109, 2022.

[6] D. Morselli Gysi, Í. Do Valle, M. Zitnik, A. Ameli, X. Gan, O. Varol,
S. D. Ghiassian, J. Patten, R. A. Davey, J. Loscalzo et al., “Network
medicine framework for identifying drug-repurposing opportunities for
covid-19,” Proceedings of the National Academy of Sciences, vol. 118,
no. 19, p. e2025581118, 2021.

[7] P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou, C. Shao,
H. Metni, C. van Hoesel, H. Schopmans, T. Sommer et al., “Graph
neural networks for materials science and chemistry,” Communications
Materials, vol. 3, no. 1, p. 93, 2022.

[8] H. T. Phan, N. T. Nguyen, and D. Hwang, “Fake news detection: A
survey of graph neural network methods,” Applied Soft Computing, p.
110235, 2023.

[9] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez,
M. Nunkesser, S. Lee, X. Guo, B. Wiltshire et al., “Eta prediction with
graph neural networks in google maps,” in Proceedings of the 30th ACM
International Conference on Information & Knowledge Management,
2021, pp. 3767–3776.

[10] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: a survey,” ACM Computing Surveys, vol. 55,
no. 5, pp. 1–37, 2022.

[11] K. Tsolaki, T. Vafeiadis, A. Nizamis, D. Ioannidis, and D. Tzovaras,
“Utilizing machine learning on freight transportation and logistics ap-
plications: A review,” ICT Express, 2022.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[13] Y. Wang and T. Derr, “Tree decomposed graph neural network,” in
Proceedings of the 30th ACM international conference on information
& knowledge management, 2021, pp. 2040–2049.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[15] A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Müller, “Graph clustering
with graph neural networks,” Journal of Machine Learning Research,
vol. 24, no. 127, pp. 1–21, 2023.

[16] Y. Lee, J. Chung, and M. Rhu, “Smartsage: training large-scale graph
neural networks using in-storage processing architectures,” in Pro-
ceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 932–945.

[17] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou,
“Aligraph: A comprehensive graph neural network platform,” arXiv
preprint arXiv:1902.08730, 2019.

[18] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” Advances in neural information processing systems, vol. 33,
pp. 22 118–22 133, 2020.

[19] M. Wang, L. Yu, Q. G. Da Zheng, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma, Z. Huang et al., “Deep graph library: towards efficient
and scalable deep learning on graphs. corr abs/1909.01315 (2019),”
arXiv preprint arXiv:1909.01315, 2019.

[20] Y.-C. Lin, G. Deng, and V. Prasanna, “A unified cpu-gpu protocol for
gnn training,” arXiv preprint arXiv:2403.17092, 2024.

[21] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[22] C. Yin, D. Zheng, I. Nisa, C. Faloutos, G. Karypis, and R. Vuduc,
“Nimble gnn embedding with tensor-train decomposition,” 2022.

[23] C. Yin, B. Acun, X. Liu, and C.-J. Wu, “Tt-rec: Tensor train compression
for deep learning recommendation models,” 2021.

[24] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017.

[25] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2018.

[26] Z. Qu, D. Niu, S. Li, H. Zheng, and Y. Xie, “Tt-gnn: Efficient on-chip
graph neural network training via embedding reformation and hardware
optimization,” ser. MICRO ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 452–464. [Online]. Available:
https://doi.org/10.1145/3613424.3614305

[27] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[28] X. Liu, M. Yan, L. Deng, G. Li, X. Ye, and D. Fan, “Sampling meth-
ods for efficient training of graph convolutional networks: A survey,”
IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 2, pp. 205–234,
2021.

[29] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, 2018, pp.
974–983.

[30] G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio, “Variance
reduction in sgd by distributed importance sampling,” arXiv preprint
arXiv:1511.06481, 2015.

[31] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[32] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent
importance sampling for training deep and large graph convolutional
networks,” Advances in neural information processing systems, vol. 32,
2019.

[33] Y. Gong, M. Yin, L. Huang, J. Xiao, Y. Sui, C. Deng, and
B. Yuan, “Ette: Efficient tensor-train-based computing engine for
deep neural networks,” ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589103

[34] G. Karypis and V. Kumar, “Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1997.

[35] P. Bennet, C. Doerr, A. Moreau, J. Rapin, F. Teytaud, and O. Teytaud,
“Nevergrad: black-box optimization platform,” ACM SIGEVOlution,
vol. 14, no. 1, pp. 8–15, 2021.

[36] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for
multi-objective optimization,” Evolutionary computation, vol. 15, no. 1,
pp. 1–28, 2007.

[37] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4.
ieee, 1995, pp. 1942–1948.

[38] K. V. Price, R. M. Storn, and J. A. Lampinen, “The differential
evolution algorithm,” Differential evolution: a practical approach to
global optimization, pp. 37–134, 2005.

[39] Z. Qin, M. B. Wakin, and Z. Zhu, “Guaranteed nonconvex factorization
approach for tensor train recovery,” 2024.

[40] S. University. (2024) Ogb node property prediction leaderboard.
Accessed: 2024-06-14. [Online]. Available: https://ogb.stanford.edu/
docs/leader nodeprop/

[41] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov,
“Tensorizing neural networks,” in Advances in Neural Information
Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, Eds., vol. 28. Curran Associates, Inc., 2015.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2015/file/6855456e2fe46a9d49d3d3af4f57443d-Paper.pdf

[42] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan,
“Tie: energy-efficient tensor train-based inference engine for deep
neural network,” ser. ISCA ’19. New York, NY, USA: Association

for Computing Machinery, 2019, p. 264–278. [Online]. Available:
https://doi.org/10.1145/3307650.3322258

[43] Y. Ren, B. Wang, L. Shang, X. Jiang, and Q. Liu, “Exploring extreme
parameter compression for pre-trained language models,” 2022.

[44] V. Chekalina, G. Novikov, J. Gusak, I. Oseledets, and A. Panchenko,
“Efficient gpt model pre-training using tensor train matrix representa-
tion,” 2023.

[45] Z. Wang, Y. Wang, B. Feng, D. Mudigere, B. Muthiah, and Y. Ding,
“El-rec: Efficient large-scale recommendation model training via tensor-
train embedding table,” in SC22: International Conference for High

Performance Computing, Networking, Storage and Analysis, 2022, pp.
1–14.

[46] M. Imaizumi, T. Maehara, and K. Hayashi, “On tensor train rank
minimization: Statistical efficiency and scalable algorithm,” 2017.

[47] X.-Y. Liu, Y. Fang, L. Yang, Z. Li, and A. Walid, “Chapter 9 - high-
performance tensor decompositions for compressing and accelerating
deep neural networks,” in Tensors for Data Processing, Y. Liu,
Ed. Academic Press, 2022, pp. 293–340. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780128244470000157

