
DNNTune: Automatic Benchmarking 

DNN Models for Mobile-cloud Computing

Chunwei Xia, Jiacheng Zhao, Huimin Cui, Jingling Xue, Xiaobing Feng

Institute of Computing Technology, Chinese Academy of Sciences

Work in conjunction with Prof. Jingling Xue, UNSW, Australia

HiPEAC, Bologna, Italy, Jan 20, 2020



Outline

➢ Introduction and Backgrounds

➢ DNNTune Framework

➢ Experimental Setup

➢ Mobile-only Optimal Deployment

➢ Analyzing Model Partitioning

➢ Analyzing Influence Factors

➢ Conclusion

2



Introduction and Backgrounds

• Deep Neural Networks (DNNs) are increasingly adopted

in AI applications.

▪ Image processing

▪ Language translation

▪ Speech recognition

▪ …

• Traditionally DNNs are deployed in the cloud, now

moving towards the edge.

• HW Accelerator：
▪ Qualcomm: Snapdragon 855+(Hexagon 690+Adreno 640)

▪ HiSilicon: Kirin 980(NPUx2, Cambricon)

▪ Samsung: Exynos 9825(NPU+Mali-G76 MP12)

▪ MediaTek: Helio P90(APU 2.0) 3

Andrey Ignatov etc, AI Benchmark: All About Deep Learning on Smartphones in 2019



Introduction and Backgrounds

Mengwei Xu etc, A First Look at Deep Learning Apps on Smartphones, at WWW’19 4

DL is used as core building 

blocks in 171/221 mobile apps
Mobile DL frameworks are 

gaining traction



Introduction and Backgrounds

• New paradigm for DNN inferencing

• Neurosurgeon: Partition the DNN between the edge

and cloud

• Reduce latency and energy

5
Yiping Kang etc, Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge, at ASPLOS’17



Introduction and Backgrounds

• Diversity of edge devices and DNN models,

▪ HW: CPU, memory, ASIC for DNN, battery life, …

▪ SW: frameworks/libraries, # of threads …

▪ Inference latency, model size, memory usage, network

communication…

6

There are no standard mobile

chipset to optimize for

Carole-Jean Wu etc, A look at smartphones Facebook runs on, Facebook, Inc



Outline

➢ Introduction and Backgrounds

➢ DNNTune Framework

➢ Experimental Setup

➢ Mobile-only Optimal Deployment

➢ Analyzing Model Partitioning

➢ Analyzing Influence Factors

➢ Conclusion

7



DNNTune Framework

• Goal

▪ Characterize different DNN models on a number of mobile 

devices.

▪ Automatically seek for a partitioning point for mobile-cloud 

coordinate computing

• Challenges

▪ Diversity

▪ Layer-wise profiling

– Latency from several milliseconds to several seconds

8



DNNTune Framework

9
The DNNTune framework overview.



DNNTune Framework

10An example for the configuration interface.

• How to use the framework

▪ Configure DNN model

▪ Processing platform

▪ Analysis objective



DNNTune Framework

11The instrumentation for layer-wise profiling in DNNTune.

• How to collect layer-wise execution info

▪ Snapdragon Profiler samples the system power every 50 ms,

▪ “bottleneck_3_2” in MobileNet-V2 is 5 ms



DNNTune Framework

12
Mechanism for auto instrumentation.



DNNTune Framework

• Deployment Analyzer

1. Running and profiling.

2. Computing for each partitioning point.

1. 𝑇𝑝 = 𝑇m + 𝑇t + 𝑇𝑐

2. 𝐸𝑝 = 𝐸m + 𝐸t

3. T：latency， E:energy 𝑝: partition point, 𝑚:mobile platform processing, 

𝑐: cloud platform processing, 𝑡:transfer data

3. Traversing.

13

Partition point 𝑝

Process on mobile m Process on cloud c

Transfer data 𝑡

Candidate Partition points

https://www.apriorit.com/images/articles/applying_inception_v3/figure-1.jpg

Candidate Partition points



Outline

➢ Introduction and Backgrounds

➢ DNNTune Framework

➢ Experimental Setup

➢ Mobile-only Optimal Deployment

➢ Analyzing Model Partitioning

➢ Analyzing Influence Factors

➢ Conclusion

14



Experimental Setup

15

Small RNN

Big RNN
Small MLP
Big MLP

Small CNN

Big CNN

“Small” for optimized for mobile devices

“Big” for models that aim to reach the highest accuracy



Experimental Setup

• HW

▪ Cloud platform:

– Intel Xeon E5-2620 v4

▪ Mobile device with AI accelerator

– NVIDIA Jetson TX2 with a 256-core Pascal GPU

– Honor 10 with a Neural Processing Unit (NPU) in Kirin 970

▪ Three Mobile devices from high-end to low-end

16



Experimental Setup

• Framework

▪ Tensorflow r1.7

▪ TFLite

▪ MACE

• Energy consumption

▪ snapdragon_profiler developed by Qualcomm

▪ 𝐸 = 𝑇m 𝑒 ∗ 𝑝𝑚(𝑒)

▪ 𝑝𝑚 𝑒 = p𝑚(𝑒𝑎𝑐𝑡𝑖𝑣𝑒) − p𝑚(𝑒𝑖𝑑𝑙𝑒)

17



Outline

➢ Introduction and Backgrounds

➢ DNNTune Framework

➢ Experimental Setup

➢ Mobile-only Optimal Deployment

➢ Analyzing Model Partitioning

➢ Analyzing Influence Factors

➢ Conclusion

18



Mobile-Only Optimal Deployment

19

• Only CPU available

▪ 4 big cores→best performance (42 ms)

▪ 4 little cores →least energy

• GPU provides the best performance and energy efficiency

Latency and energy consumption of MobileNet-V2 on Mobile A when using different resources.



Discussing Model Quantization

20

• Significant speedup of quantization over non-quantization

• MobileNet-V2 gains 4.7×, 2.0×, and 4.0× on the three 

mobile CPUs



Outline

➢ Introduction and Backgrounds

➢ DNNTune Framework

➢ Experimental Setup

➢ Mobile-only Optimal Deployment

➢ Analyzing Model Partitioning

➢ Analyzing Influence Factors

➢ Conclusion

21



Analyzing Model Partitioning

• Evaluation Methodology

▪ CPUs and GPUs of Mobile A, Mobile B, and Mobile C

▪ TensorFlow for the evaluation of CPUs and MACE for mobile 

GPUs.

▪ 3G, 4G, and Wi-Fi

22



Latency-first Model Partitioning

23

• MobileNet-V2

▪ Bottleneck_3_3 is optimal (115 ms vs 138 ms)

• SqueezeNet-V11

▪ Mobile-only is optimal (99 ms vs 111 ms)



Latency-first Model Partitioning

• Analyzing CNN Behaviors for Model Partitioning

▪ communication overhead at the partitioning point to transfer 

data from the mobile to cloud

▪ benefit of processing the latter layers in cloud

24
Latency and energy consumption of MobileNet-V2 on Mobile A when using different resources.



Energy-first Model Partitioning

• 3G.

▪ For MobileNet-V2 and ShuffleNet-V2 0.5x, the mobile-only is the optimal

▪ Communication energy overhead is higher than the computation energy

• Wi-Fi

▪ Saving 15% energy as most for ShuffleNet-V2 0.5x

25



Layer-wise Profiling

26

The layer-wise cache references and miss ratio for Vgg16 profiled by DNNTune.



Outline

➢ Introduction and Backgrounds

➢ DNNTune Framework

➢ Experimental Setup

➢ Mobile-only Optimal Deployment

➢ Analyzing Model Partitioning

➢ Analyzing Influence Factors

➢ Conclusion

27



Analyzing Influence Factors： Processing Unit

28

Observation 1: Modern mobile CPUs are powerful enough to process 

small LSTM/MLP models, but cannot process large LSTM/MLP models 

and most CNNs unless they are specifically optimized for mobiles.

Computation latency of DNN models on mobile CPUs and GPUs with optimal configuration.



Analyzing Influence Factors： Processing Unit

Observation 2: High-end and mid-end mobile GPUs can 

significantly reduce the computation latency than CPUs, 

while low-end cannot.

29

Computation latency of DNN models on mobile CPUs and GPUs with optimal configuration.



Analyzing Influence Factors： Processing Unit

30Computation latency of DNN models on mobile CPUs and GPUs with optimal configuration.

Observation 3: Mobile GPUs are more energy-efficient than 

Mobile CPUs, especially for high-end and mid-end mobile GPUs.



Analyzing Influence Factors： CPU Affinity

31

Observation 4: Simultaneously using big and little cores 

does not always benefit.

Performance on Mobile A-CPU varying with CPU affinity and thread number.



Analyzing Influence Factors： Processing Frameworks

32

• Latency

▪ MACE is the optimal framework for latency.

▪ TFLite quantized is the optimal

• Energy

▪ There is no such framework that is optimal on energy consumption for all DNN models.

• Memory

▪ TFLite and MACE are more memory-efficient than Tensorflow

▪ Quantized models can save 74% memory



Analyzing Influence Factors： GPU half-precision

33Speedup of FP16 over FP32.



Analyzing Influence Factors： AI Accelerators

34

• AI accelerators can achieve significant performance 

improvement for “big” CNNs
▪ NPU is 8.08× and 3.91× faster than the best CPU and GPU for Inception-V3

▪ Only 0.79x to 1.81x faster for SqueezeNet-V11



Conclusion

• Present a DNN tuning framework, DNNTune

• Use it to find optimal partition point for mobile-cloud 

computing

• And analyze the behaviors of three typical kinds of 

DNNs on diverse mobile platforms with different 

influence factors

35



Thank you.

36


	Slide 1: DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing
	Slide 2: Outline
	Slide 3: Introduction and Backgrounds
	Slide 4: Introduction and Backgrounds
	Slide 5: Introduction and Backgrounds
	Slide 6: Introduction and Backgrounds
	Slide 7: Outline
	Slide 8: DNNTune Framework
	Slide 9: DNNTune Framework
	Slide 10: DNNTune Framework
	Slide 11: DNNTune Framework
	Slide 12: DNNTune Framework
	Slide 13: DNNTune Framework
	Slide 14: Outline
	Slide 15: Experimental Setup
	Slide 16: Experimental Setup
	Slide 17: Experimental Setup
	Slide 18: Outline
	Slide 19: Mobile-Only Optimal Deployment
	Slide 20: Discussing Model Quantization
	Slide 21: Outline
	Slide 22: Analyzing Model Partitioning
	Slide 23: Latency-first Model Partitioning
	Slide 24: Latency-first Model Partitioning
	Slide 25: Energy-first Model Partitioning
	Slide 26: Layer-wise Profiling
	Slide 27: Outline
	Slide 28: Analyzing Influence Factors： Processing Unit
	Slide 29: Analyzing Influence Factors： Processing Unit
	Slide 30: Analyzing Influence Factors： Processing Unit
	Slide 31: Analyzing Influence Factors： CPU Affinity
	Slide 32: Analyzing Influence Factors： Processing Frameworks
	Slide 33: Analyzing Influence Factors： GPU half-precision
	Slide 34: Analyzing Influence Factors： AI Accelerators
	Slide 35: Conclusion
	Slide 36: Thank you.

