Characterizing DNN Models for Edge-Cloud Computing

Chunwei Xia™, Jiacheng Zhao 7, Huimin Cui '3, Xiaobing Feng '3
State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

SSchool of Computer and Control Engineering, University of Chinese Academy of Sciences

_— Beijing, China

Introduction Experimental Setup

Deep Neural Networks (DNNs), deployed in the cloud nowadays, are DNN Models:
moving to the edge, e.g. mobile phones.

Category Input Output Layers # Params
Inception V1 22 6.79M 3.19B
CNNs ResNet-50 [224,224,3] [1000] 50 25.6M 3.8B
MobileNet 1.0 15 4.2M 576M
i RNNs LSTM [20,200] |[20, 10000]| 2 2.65M | 14.8M
¥ —y MLP MLP [1,784] [10] 5 13.9M | 13.9M
However, DNNs are computation-intensive and edge devices are always
resource-constrained, driving us to run the DNNs between the edge Cloud & Edge Platforms:

and the cloud collaboratively, i.e. Edge-Cloud Computing.
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But, the performance characteristics of numerous DNNs on diverse
platforms are not clear, especially on edge devices.

E5-2620 v4 | Server CPU A | OnePlus 5T Sd. 835 |Edge CPU A
E5-1603 v4 | Server CPU B| OnePlus 3 Sd. 820 |Edge CPU B
Tesla K40c | Server GPU A |[Redmi Note 4x| Sd. 625 |Edge CPU C| ==
@ R GTX 1070 |Server GPU B| Jetson TX2 |Pascal GPU|Edge GPU A| |

Network
transm ission

+ ¢ T > -~
v

N S D 9~

w3 D<K 9 ~

A s D<K QO ~

Ul s < 9 r

+ € T &+ € O

benchmark_model of Tensorflow for performance analysis
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To provide insights on performance characteristics of
representative DNNs on cloud and edge platforms
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Fig. 2: Computation latency of five DNNs on Edge CPU A with 1, 2, 4, 8 GPU (Server or Edge) VS. CPU: 5x faster for CNNs and MLP, 1.0x for
threads when using Big and/or Little cores. LSTM
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Fig. 3: Comparison of edge CPU and GPU energy consumption for MobileNet 1.0
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Balance Latency and Energy consumption via thread-to-core mapping. Py




